|
|
|
Categories
|
|
Information
|
|
Featured Product
|
|
|
 |
|
|
There are currently no product reviews.
 ;
Super manual it contains all the things you need to service your Marantz 2100.
 ;
A very easy to understand and use manual. Well worth the money.
 ;
Very good information with clear drawings. Thanks!
 ;
The ease of this purchase was a good start. The content of this manual was exactly all I needed to retore my Tandberg 64.
All of the mechanical and electrical information is contained in the manual and the quality of the document makes reading the data easy.
The exerience with the resource has made this my prime source for technical data.
 ;
Owner-manuals.com is the best Possibility to give vantage HIGH CLASS Elektronic COMPONENTS
a new Life.Thanks alot for your perfekt Service.
CONVERGENCE CRT CUT-OFF, BACKGROUND AND SUB-CONTRAST ADJUSTMENT
NO. Adjustment part Adjusting procedure conditions Waveform and others NO. Adjustment part Adjusting procedure conditions Waveform and others 1 CRT CUTOFF 1. Switch TV to VIDEO mode, BLUE BACK OFF, 1 CONVERGENCE 1. Receive the �Crosshatch Pattern� signal. ADJUSTMENT with NO VIDEO signal. CONTROL) 3. Connect the oscilloscope to Red OUT from IC801.(TP851 (14")/TP852 (20"/21")) R Range : 1 V/Div (DC) Sweep : 5 msec/Div
RGB 2. Turn the 6-pole magnet to a proper opening
1 V colours.
3.0Vdc
BGR
14BM2, 14BM2S/G 20BM2, 20BM2S/G 21BM2, 21BM2S/G
B G adjustment.) Static convergence
ADJUSTMENT 2. Using the remote controller, call NORMAL (I C BUS 2. Press R/C to set Picture Normal condition. (To be done mode.2 after the purity
1. Turn the 4-pole magnet to a proper opening
angle in order to superpose the blue and red Fig. 5-1
0 4. Adjust SCREEN VR, so that the tip of signal
angle in order to superpose the green colour reach 3.0 ±0.1 Vdc. Fig. 6 over the blue and red colours. G 2 SUB1. Call �SUB-BRI� in service mode. (Receive B Fig. 5-2 2 screen in the following steps. (I C BUS that line 1, 2 and 3 have the same darkness
B 2 3 and finally line 5 will be the brighter 1, 2 and 3 are in same black level. R
Dynamic convergence BRIGHTNESS Crosshatch pattern with 5 black level windows) 1. Adjust convergence on fringes of the ADJUSTMENT 2. Adjust the �SUB BRIGHT� bus data in order 1 2 3 4 5 wherelse 4 is slightly brighter than line 1, a) Fig. 5-1: Drive the wedge at point �a� and RGB CONTROL) swing the deflection coil upward. than line 4. b) Fig. 5-2: Drive the wedge at points �b� and R
G
Fig. 7 �c� and swing the deflection coil * 12,300°K X : 0.272 c) Fig. 5-3: Drive the �c� wedge deeper and BALANCE nal.
downward. 3 WHITE 1. Receive the �WHITE� pattern with BURST sigRefer to Page ????. Fig. 5-3 2. Press R/C to set Picture NORMAL condition. Y : 0.275 swing the deflection coil rightward. SERVICE
R (-) and TP603 (+). Y : 0.255
2
BGR MODE 3. Connect DC miliammeter between TP602 * 18,000°K X : 0.255 d) Fig. 5-4: Drive the �b� wedge deeper and
2. Fix all wedges on the CRT and apply glass (I C BUS 4. Check Beam current should be around 1,100 µA B & DRI-BS data to have a colour temperature *Note: Above Data can be UP/ magnet unit (purity, 4-pole, 6-pole magnets) * Note . 6. Receive �WHITE� pattern, WITH BURST signal, LOW HIGH Finally received the Red-only and Blue-only Wedge "a"
100° LUMINATE Y signal.
swing the deflection coil leftward. ADJUSTMENT G
tape over them. CONTROL) (20"&21") (14" around 800 µA). (MINOLTA COLOUR ANALYZER Fig. 5-4 of 12,300°K or 7,500°K (white). DOWN by Volume key. and magnet unit lock screw.
3. Apply lacquer to the deflection yoke lock screw, 5. Set it to service mode and adjust the DRI-GS, CA-100)
8
Wedge "c" Note: This adjustment must be done after "b"
and set BRIGHTNESS Y by generator, to ** 14" 10 200 cd/m2 signals to make sure there is no other colours (MINOLTA CA-100) by reducing 20"/21" 10 120 cd/m2 on the screen. About 7. Adjust �CUT-R� & �CUT-G� to get desired colour temperature. Then go back NORMAL mode Lacquer (HIGH BRIGHT**) to check colour temperature. If out 14� back to (1)
Fig. 5-5
4-pole magnet CRT neck
warming up the unit for 30 minutes or longer with a beam current over 700 (20"&21") µA. (For 14", the beam current should be 6-pole magnet over 500 µA) * Adjust DRI-GC/GW, DR-BC/BW as following data, after finishing DRI-BS and DRI-GS data * 12,300°K DRI-GW=�DRI-GS�-7 adjustment. DRI-BW=�DRI-BS�-7 DRI-RW=32 (FIXED), DRI-GW=�DRIGS�-7*, DRI-BW=�DRI-BS�-7* * 18,000°K DRI-GC=�DRI-GS� 20cm
40cm
Purity magnet DRI-GC=�DRI-GS�-7* DRI-RC=27
Lacquer (21") DRI-RC=25, DRI-BC=�DRI-BS�, DATA-5
Fig. 5-6 (14") 4 MAXIMUM 1. Receive the �Monoscope Pattern� signal. BEAM CHECK 2. Press R/C to set Picture NORMAL condition. 3. Connect the DC miliammeter between TP603 4. Beam current must be within 1,100 ±100µA
(+) and TP602 (�). (Full Scale: 3 mA Range) (21") 800 ± 100 µA(14") .
8-1 8-2
|
|
 |
> |
|